3 research outputs found

    Hybrid Cascaded H-Bridge Multilevel Inverter Motor Drive DTC Control for Electric Vehicles

    No full text
    International audienceThis paper presents a hybrid cascaded H-bridge multilevel motor drive DTC control scheme for Electric (EV) or Hybrid Electric Vehicles (HEV). The control method is based on Direct Torque Control operating principles. The stator voltage vector reference is computed from the stator flux and torque errors imposed by the flux and torque controllers. This voltage reference is then generated using a hybrid cascaded H-bridge multilevel inverter, where each phase of the inverter can be implemented using a DC source, which would be available from fuel cells, batteries, or ultracapacitors. This inverter provides nearly sinusoidal voltages with very low distortion, using less switching devices. Due to the small dv/dt's, torque ripple is greatly reduced. In addition, the multilevel inverter can generate a high and fixed switching frequency output voltage with less switching losses, since only the small power cells of the inverter operate at high switching rate. Therefore a high performance and also efficient torque and flux controller is obtained, enabling a DTC solution for multilevel inverter powered motor drives

    Hybrid Cascaded H-Bridge Multilevel-Inverter Induction-Motor-Drive Direct Torque Control for Automotive Applications

    No full text
    International audienceThis paper presents a hybrid cascaded H-bridge multilevel motor drive direct torque control (DTC) scheme for electric vehicles (EVs) or hybrid EVs. The control method is based on DTC operating principles. The stator voltage vector reference is computed from the stator flux and torque errors imposed by the flux and torque controllers. This voltage reference is then generated using a hybrid cascaded H-bridge multilevel inverter, where each phase of the inverter can be implemented using a dc source, which would be available from fuel cells, batteries, or ultracapacitors. This inverter provides nearly sinusoidal voltages with very low distortion, even without filtering, using fewer switching devices. In addition, the multilevel inverter can generate a high and fixed switching frequency output voltage with fewer switching losses, since only the small power cells of the inverter operate at a high switching rate. Therefore, a high performance and also efficient torque and flux controllers are obtained, enabling a DTC solution for multilevel-inverter-powered motor drives

    Predictive Power Control of Doubly-Fed Induction Generator for Wave Energy Converters

    No full text
    International audienceSolutions to today energy challenges need to be explored through alternative, renewable and clean energy sources to enable a diverse energy resource plan. An extremely abundant and promising source of energy exists in oceans. There are several wave energy converters to harness this energy. Some of them, as in tidal applications, use the Doublyfed induction generator (DFIG). This paper deals then with a model-based predictive power control of a DFIG-based Wave Energy Converter (WEC). In the proposed control approach, the predicted output power was calculated using a DFIG linearized state-space model. The DFIG-based WEC power tracking performances further illustrates the dynamic features of the proposed predictive power control approach
    corecore